Können Sie einige reale Beispiele von Zeitreihen geben, für die ein gleitender Durchschnittsprozess der Ordnung q, dh yt sum q thetai varepsilon varepsilont, Text varepsilont sim mathcal (0, sigma2) hat einige a priori Grund für ein gutes Modell Mindestens Für mich scheinen autoregressive Prozesse intuitiv ganz einfach zu verstehen, während MA-Prozesse auf den ersten Blick nicht so natürlich erscheinen. Ich interessiere mich nicht für theoretische Ergebnisse hier (wie Wolds Theorem oder Invertibility). Als Beispiel für das, was ich suche, nehmen Sie an, dass Sie tägliche Aktienrendite rt sim Text (0, sigma2) haben. Dann haben die durchschnittlichen wöchentlichen Aktienrenditen eine MA (4) - Struktur als rein statistisches Artefakt. In den USA, speichert und Hersteller häufig Coupons, die für einen finanziellen Rabatt oder Rabatte eingelöst werden können, beim Kauf eines Produkts ausgeben. Sie sind oft weit verbreitet per Post, Zeitschriften, Zeitungen, das Internet, direkt vom Händler und mobile Geräte wie Handys. Die meisten Gutscheine haben ein Ablaufdatum, nach dem sie nicht durch den Laden geehrt werden, und dies ist, was produziert quotvintagesquot. Coupons möglicherweise Umsatz steigern, aber wie viele gibt es da draußen oder wie groß der Rabatt ist nicht immer der Daten-Analyst bekannt. Sie können denken, sie eine positive Fehler. Ndash Dimitriy V. Masterov In unserem Artikel Skalierung der Portfolio-Volatilität und Berechnung der Risikobeiträge bei Vorliegen serieller Kreuzkorrelationen analysieren wir ein multivariates Modell der Vermögensrenditen. Aufgrund unterschiedlicher Abschlusszeiten der Börsen erscheint eine Abhängigkeitsstruktur (nach der Kovarianz). Diese Abhängigkeit gilt nur für eine Periode. So modellieren wir diese als Vektor-gleitenden Durchschnittsprozess der Ordnung 1 (siehe Seiten 4 und 5). Das resultierende Portfolio-Verfahren ist eine lineare Transformation eines VMA (1) - Verfahrens, das im allgemeinen ein MA (q) - Verfahren mit qge1 ist (siehe Details auf den Seiten 15 und 16). Beantwortet Dec 3 12 at 21: 39Es gibt eine Reihe von Ansätzen zur Modellierung Zeitreihen. Wir skizzieren einige der häufigsten Ansätze unten. Trend, saisonal, Restzersetzungen Ein Ansatz ist es, die Zeitreihen in einen Trend-, Saison - und Restbestandteil zu zerlegen. Eine dreifache Exponentialglättung ist ein Beispiel für diesen Ansatz. Ein anderes Beispiel, das saisonale Löß genannt wird, basiert auf lokal gewichteten kleinsten Quadraten und wird von Cleveland (1993) diskutiert. Wir behandeln nicht saisonale Löss in diesem Handbuch. Frequenzbasierte Methoden Ein weiterer Ansatz, der in der wissenschaftlichen und technischen Anwendung häufig verwendet wird, besteht darin, die Serie im Frequenzbereich zu analysieren. Ein Beispiel für diesen Ansatz bei der Modellierung eines sinusförmigen Datensatzes wird in der Strahlablenkungsfallstudie gezeigt. Das Spektraldiagramm ist das Hauptinstrument für die Frequenzanalyse von Zeitreihen. Autoregressive (AR) Modelle Ein allgemeiner Ansatz für die Modellierung univariater Zeitreihen ist das autoregressive (AR) Modell: Xt delta phi1 X phi2 X cdots phip X At, wobei (Xt) die Zeitreihe, (At) weißes Rauschen und delta ist Links (1 - sum p phii rechts) mu. Mit (mu) das Prozeßmittel. Ein autoregressives Modell ist einfach eine lineare Regression des aktuellen Wertes der Serie gegen einen oder mehrere vorherige Werte der Serie. Der Wert von (p) wird als Ordnung des AR-Modells bezeichnet. AR-Modelle können mit einer von verschiedenen Methoden analysiert werden, einschließlich Standard-linearen Methoden der kleinsten Quadrate. Sie haben auch eine einfache Interpretation. Moving Average (MA) Modelle Ein weiteres gemeinsames Konzept für die Modellierung von univariaten Zeitreihenmodellen ist das gleitende Durchschnittsmodell (MA): Xt mu At - theta1 A - theta2 A - cdots - thetaq A, wobei (Xt) die Zeitreihe (mu ) Ist der Mittelwert der Reihe, (A) sind weiße Rauschterme, und (theta1,, ldots,, thetaq) sind die Parameter des Modells. Der Wert von (q) wird als Ordnung des MA-Modells bezeichnet. Das heißt, ein gleitendes Durchschnittsmodell ist konzeptionell eine lineare Regression des aktuellen Wertes der Reihe gegen das weiße Rauschen oder zufällige Schocks eines oder mehrerer früherer Werte der Reihe. Es wird angenommen, daß die zufälligen Schocks an jedem Punkt von der gleichen Verteilung, typischerweise einer Normalverteilung, mit einer Stelle bei Null und einer konstanten Skala kommen. Die Unterscheidung in diesem Modell ist, dass diese zufälligen Schocks propagiert werden, um zukünftige Werte der Zeitreihe. Das Anpassen der MA-Schätzungen ist komplizierter als bei AR-Modellen, da die Fehlerterme nicht beobachtbar sind. Dies bedeutet, dass iterative nicht-lineare Anpassungsverfahren anstelle von linearen kleinsten Quadraten verwendet werden müssen. MA-Modelle haben auch eine weniger offensichtliche Interpretation als AR-Modelle. Manchmal schlagen die ACF und PACF vor, dass ein MA-Modell eine bessere Modellwahl wäre und manchmal beide AR - und MA-Begriffe in demselben Modell verwendet werden sollten (siehe Abschnitt 6.4.4.5). Beachten Sie jedoch, dass die Fehlerterme nach dem Modell unabhängig sein sollten und den Standardannahmen für einen univariaten Prozess folgen. Box und Jenkins einen Ansatz, der den gleitenden Durchschnitt und die autoregressiven Ansätze in dem Buch Time Series Analysis: Forecasting and Control (Box, Jenkins und Reinsel, 1994) kombiniert. Obwohl sowohl autoregressive als auch gleitende Durchschnittsansätze bereits bekannt waren (und ursprünglich von Yule untersucht wurden) bestand der Beitrag von Box und Jenkins darin, eine systematische Methodik zur Identifizierung und Schätzung von Modellen zu entwickeln, die beide Ansätze berücksichtigen könnten. Dies macht Box-Jenkins Modelle eine leistungsfähige Klasse von Modellen. Die nächsten Abschnitte behandeln diese Modelle im Detail. Moving Average - MA BREAKING DOWN Moving Average - MA Als SMA-Beispiel betrachten Sie eine Sicherheit mit den folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die ersten 10 Tage als Durchschnitt ausrechnen Der erste Datenpunkt. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge der zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Die Abwärtsmomentum wird mit einem bärischen Übergang bestätigt, der auftritt, wenn eine kurzfristige MA unter einem längerfristigen MA liegt.
No comments:
Post a Comment