Eine Fußnote in Pankratz (1983). Auf Seite 48, sagt: Der gleitende Durchschnitt des Etiketts ist technisch falsch, da die MA-Koeffizienten negativ sein können und nicht zu Eins summieren können. Dieses Label wird nach Konventionen verwendet. Box und Jenkins (1976) sagt auch etwas Ähnliches. Auf Seite 10: Der Name gleitender Durchschnitt ist etwas irreführend, weil die Gewichte 1, - theta, - theta, ldots, - theta, die das as multiplizieren, nicht die totale Einheit benötigen und auch nicht positiv sein müssen. Diese Nomenklatur ist jedoch allgemein gebräuchlich, und deshalb verwenden wir sie. Ich hoffe das hilft. Wenn man sich eine Null-Mittel-MA-Prozess: Xt varepsilont theta1 varepsilon cdots thetaq varepsilon, dann könnte man die rechte Seite als verwandt mit einem gewichteten gleitenden Durchschnitt der Varepsilon Begriffe, aber wo die Gewichte dont Summe auf 1. Beachten Sie, dass Kann jeder Wert von yt als ein gewichteter gleitender Durchschnitt der letzten Prognosefehler betrachtet werden. Ähnliche Erklärungen des Begriffs können an zahlreichen anderen Stellen gefunden werden. Anmerkung, dass Graeme Walsh in den Anmerkungen oben darauf hinweist, dass dieses möglicherweise mit Slutsky (1927) entstanden ist. Die Summierung der zufälligen Ursachen als Quelle der zyklischen Prozesse 1 Hyndman, R. J. Und Athanasopoulos, G. (2013) Prognose: Grundsätze und Praxis. Abschnitt 84. otextsfpp84. Als ein SMA-Beispiel, betrachten Sie eine Sicherheit mit den folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2.Moving Durchschnitt - MA BREAKING DOWN (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die ersten 10 Tage als ersten Datenpunkt ausrechnen. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge der zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin von Investoren und Händlern gefolgt, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Der Abwärtsmomentum wird mit einem bärigen Crossover bestätigt, der auftritt, wenn eine kurzfristige MA unter einer längerfristigen MA.8.4 Bewegte Durchschnittsmodelle stattfindet. Anstatt vergangene Werte der Prognosedatei in einer Regression zu verwenden, verwendet ein gleitendes Durchschnittsmodell vergangene Prognosefehler In einem regressionsähnlichen Modell. Y c et the theta e dots theta e, wobei et weißes Rauschen ist. Wir bezeichnen dies als MA (q) - Modell. Natürlich beobachten wir nicht die Werte von et, also ist es nicht wirklich Regression im üblichen Sinne. Man beachte, daß jeder Wert von yt als gewichteter gleitender Durchschnitt der letzten Prognosefehler betrachtet werden kann. Allerdings sollten gleitende Durchschnittsmodelle nicht mit der gleitenden glatten Glättung verwechselt werden, die wir in Kapitel 6 besprochen haben. Ein gleitendes Durchschnittsmodell wird für die Prognose zukünftiger Werte verwendet, während eine gleitende glatte Glättung für die Schätzung des Trendzyklus der vergangenen Werte verwendet wird. Abbildung 8.6: Zwei Beispiele für Daten aus gleitenden Durchschnittsmodellen mit unterschiedlichen Parametern. Links: MA (1) mit yt 20e t 0,8e t-1. Rechts: MA (2) mit y t e t - e t-1 0,8e t-2. In beiden Fällen ist e t normal verteiltes Weißrauschen mit Mittelwert Null und Varianz Eins. Abbildung 8.6 zeigt einige Daten aus einem MA (1) - Modell und einem MA (2) - Modell. Das Ändern der Parameter theta1, dots, thetaq führt zu unterschiedlichen Zeitreihenmustern. Wie bei autoregressiven Modellen wird die Varianz des Fehlerterms et nur den Maßstab der Reihe ändern, nicht die Muster. Es ist möglich, jedes stationäre AR (p) - Modell als MA (infty) - Modell zu schreiben. Beispielsweise können wir dies bei einem AR (1) - Modell demonstrieren: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext ende Provided -1 lt phi1 lt 1 wird der Wert von phi1k kleiner, wenn k größer wird. So erhalten wir schließlich yt und phi1 e phi12 e phi13 e cdots, ein MA (infty) Prozess. Das umgekehrte Ergebnis gilt, wenn wir den MA-Parametern einige Einschränkungen auferlegen. Dann wird das MA-Modell invertierbar. Das heißt, dass wir alle invertierbaren MA (q) Prozess als AR (infty) Prozess schreiben können. Invertible Modelle sind nicht einfach, damit wir von MA-Modellen auf AR-Modelle umwandeln können. Sie haben auch einige mathematische Eigenschaften, die sie in der Praxis einfacher zu verwenden. Die Invertibilitätsbedingungen sind den stationären Einschränkungen ähnlich. Für ein MA (1) Modell: -1lttheta1lt1. Für ein MA (2) - Modell: -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Kompliziertere Bedingungen gelten für qge3. Wiederum wird R diese Einschränkungen bei der Schätzung der Modelle berücksichtigen.
No comments:
Post a Comment