Saturday, 25 November 2017

Moving Average Forecast Gleichung


Typischer Preis Moving Average Der typische Preis Moving Average kombiniert das Pivot Point Konzept mit dem einfachen Moving Average. Die Berechnung des Pivot-Punktes (siehe: Pivot-Punkte) ist nachfolgend dargestellt: Die berechnete Pivot-Punkt-Zahl wird dann in die reguläre Simple Moving Average (siehe: Simple Moving Average) - Gleichung und nicht die Eingabe des Schlusskurses eingegeben benutzt. Die nachstehende Grafik zeigt den geringen Unterschied zwischen einem 10-Tage-Simple Moving Average und einem 10-Tage-typischen Kurs Moving Average: Der typische Preis versucht, eine realere Darstellung des Preises zu geben Durch die Einbeziehung der hohen und niedrigen Preis in den am häufigsten verwendeten Schlusskurs. Der typische Preis wird folglich als ein reiner einfacher beweglicher Durchschnitt dennoch angesehen, wie durch das Diagramm oben der Mini-Dow Zukunft referenziert werden kann, gibt es nicht viel Unterschied zwischen bewegtem Durchschnitt. Mögliche Kauf - und Verkaufssignale für den Typical Price Moving Average-Indikator werden auf den Indicator-Seiten des einfachen Moving-Average (siehe: Einfacher Gleitender Durchschnitt) diskutiert. Die oben stehenden Informationen dienen lediglich Informationszwecken und dienen nur zu Informationszwecken und stellen weder eine Handelsberatung noch eine Aufforderung zum Kauf oder Verkauf von Aktien-, Options-, Zukunfts-, Rohstoff - oder Devisenprodukten dar. Die Wertentwicklung in der Vergangenheit ist nicht unbedingt ein Hinweis auf die zukünftige Wertentwicklung. Handel ist von Natur aus riskant. OnlineTradingConcepts haftet nicht für besondere oder Folgeschäden, die aus der Nutzung oder Nichtnutzung, den auf dieser Website bereitgestellten Materialien und Informationen entstehen. (S2) bis (y1), wobei (Si) für eine geglättete Beobachtung oder EWMA steht, und (y) für das Original steht Überwachung. Die Indizes beziehen sich auf die Zeitperioden (1,, 2,, ldots,, n). Für die dritte Periode (S3 alpha y2 (1-alpha) S2) und so weiter. Es gibt keine (S1) die geglättete Reihe beginnt mit der geglätteten Version der zweiten Beobachtung. Für einen beliebigen Zeitraum (t) wird der geglättete Wert (St) durch Berechnen von St alpha y (1-alpha) S ,,,,,,, 0 gefunden. Expandierte Gleichung für (S5) Zum Beispiel die erweiterte Gleichung für die geglättete Wert (S5) ist: S5 alpha links (1-alpha) 0 y (1-alpha) 1 y (1-alpha) 2 y rechts (1-alpha) 3 S2. Veranschaulicht Exponentialverhalten Dies veranschaulicht das exponentielle Verhalten. Die Gewichte (alpha (1-alpha) t) nehmen geometrisch ab und ihre Summe ist wie unten gezeigt einheitlich, wobei eine Eigenschaft der geometrischen Reihe verwendet wird: alpha sum (1-alpha) i alpha left frac right 1 - (1-alpha) T. Aus der letzten Formel können wir sehen, daß der Summationsterm zeigt, daß der Beitrag zum geglätteten Wert (St) in jedem aufeinanderfolgenden Zeitraum kleiner wird. Beispiel für (alpha 0,3) Let (alpha 0,3). Man beachte, dass die Gewichte (alpha (1-alpha) t) mit der Zeit exponentiell (geometrisch) abnehmen. Die Summe der quadratischen Fehler (SSE) 208.94. Der Mittelwert der quadratischen Fehler (MSE) ist die SSE 11 19.0. Berechnen Sie für verschiedene Werte von (alpha) Das MSE wurde erneut für (alpha 0,5) berechnet und erwies sich als 16,29, so dass in diesem Fall ein (alpha) von 0,5 bevorzugt wäre. Können wir es besser machen Wir könnten die bewährte Trial-and-Error-Methode anwenden. Dies ist ein iteratives Verfahren, das mit einem Bereich von (alpha) zwischen 0,1 und 0,9 beginnt. Wir bestimmen die beste Ausgangswahl für (alpha) und suchen dann zwischen (alpha - Delta) und (alpha Delta). Wir könnten dies vielleicht noch einmal wiederholen, um die besten (alpha) bis 3 Dezimalstellen zu finden. Nichtlineare Optimierer können verwendet werden. Aber es gibt bessere Suchmethoden, wie das Marquardt-Verfahren. Dies ist ein nichtlinearer Optimierer, der die Summe der Quadrate der Residuen minimiert. Im Allgemeinen sollten die meisten gut entworfenen statistischen Softwareprogramme in der Lage sein, den Wert von (alpha) zu finden, der die MSE minimiert. Ein Beispieldiagramm, das geglättete Daten für 2 Werte von (alpha)

No comments:

Post a Comment